Slope Criteria for Perpendicular Lines

Directions: Supply reasons.

Theorem: If two lines are perpendicular, their slopes are negative reciprocals. (The product of the slopes = -1.) V

Name

Given: $\ell_1 \perp \ell_2$ (let m_1 = slope of ℓ_1 ; m_2 = slope of ℓ_2) Prove: $m_1 = -1/m_2$ ($m_1 \cdot m_2 = -1$)

For ease of computation, translate the perpendicular lines so the point of intersection will be the origin. Draw a vertical line x = 1 to form $\triangle ABC$.

We will be using the Distance Formula and the Pythagorean Theorem to complete this proof.

Proof:

- **1.** $\ell_1 \perp \ell_2$ with vertical line x = 1(let m_1 = slope of ℓ_1 ; m_2 = slope of ℓ_2)
- **2.** The vertical line, x = 1, intersects ℓ_1 at $(1, m_1)$ and ℓ_2 at $(1, m_2)$.
- **3.** $\angle ABC$ is a right angle.
- **4.** $\triangle ABC$ is a right triangle.

5.
$$BA = \sqrt{1 + m_1^2}$$

 $BC = \sqrt{1 + m_2^2}$
 $AC = \sqrt{(1 - 1)^2 + (m_1 - m_2)^2} = m_1 - m_2$
6. $(\sqrt{1 + m_1^2})^2 + (\sqrt{1 + m_2^2})^2 = (m_1 - m_2)^2$
7. $1 + m_1^2 + 1 + m_2^2 = (m_1 - m_2)^2$
8. $2 + m_1^2 + m_2^2 = m_1^2 - 2m_1m_2 + m_2^2$
9. $2 = -2m_1m_2$
10. $-1 = m_1m_2$
11. $m_1 = -\frac{1}{m_2}$

All Rights Reserved © MathBits.com

Theorem: If the slopes of two lines are negative reciprocals, the lines are perpendicular. (The product of the slopes = -1.) (Let m_1 = slope of ℓ_1 ; m_2 = slope of ℓ_2)

Given: $m_1 = -1/m_2$ $(m_1 \cdot m_2 = -1)$ **Prove:** $\ell_1 \perp \ell_2$

For ease of computation, translate the lines so the point of intersection will be the origin. Draw a vertical line x = 1 to form $\triangle ABC$.

We will be using the Distance Formula to express the sides of $\triangle ABC$, and then we will attempt to show that the sides satisfy the Pythagorean Theorem proving $\triangle ABC$ to be a right triangle (making the lines perpendicular).

Proof:

- **1.** $m_1 = -1/m_2$; $(m_1 \cdot m_2 = -1)$; vertical line x = 1
- 2. The vertical line, x = 1, intersects ℓ_1 at $(1, m_1)$ and ℓ_2 at $(1, m_2)$.

3.
$$BA = \sqrt{1 + m_1^2}$$

 $BC = \sqrt{1 + m_2^2}$
 $AC = \sqrt{(1 - 1)^2 + (m_1 - m_2)^2} = m_1 - m_2$

Will the sides of $\triangle ABC$ satisfy the Pythagorean Theorem?

4.
$$\left(\sqrt{1+m_1^2}\right)^2 + \left(\sqrt{1+m_2^2}\right)^2 = (m_1 - m_2)^2$$

5. $1 + m_1^2 + 1 + m_2^2 = (m_1 - m_2)^2$
6. $2 + m_1^2 + m_2^2 = m_1^2 - 2m_1m_2 + m_2^2$
7. $2 = -2m_1m_2$
8. $-1 = m_1m_2$
9. $m_1 = -\frac{1}{m_2}$
10. $\triangle ABC$ is a right \triangle .

- **11.** $\angle ABC$ is right \angle .
- **12.** $\ell_1 \perp \ell_2$

