Slope Criteria for Perpendicular Lines

Name \qquad
Directions: Supply reasons.

Theorem: If two lines are perpendicular, their slopes are negative reciprocals.
(The product of the slopes $=-1$.)
Given: $\boldsymbol{\ell}_{1} \perp \boldsymbol{\ell}_{2} \quad\left(\right.$ let $m_{1}=$ slope of $\boldsymbol{\ell}_{1} ; m_{2}=$ slope of $\left.\boldsymbol{\ell}_{2}\right)$
Prove: $m_{1}=-1 / m_{2} \quad\left(m_{1} \cdot m_{2}=-1\right)$
For ease of computation, translate the perpendicular lines so the point of intersection will be the origin. Draw a vertical line $x=1$ to form $\triangle A B C$.

We will be using the Distance Formula and the Pythagorean Theorem to complete this proof.

Proof:

1. $\ell_{1} \perp \ell_{2}$ with vertical line $x=1$

2. The vertical line, $x=1$, intersects
$\boldsymbol{\ell}_{1}$ at $\left(1, m_{1}\right)$ and $\boldsymbol{\ell}_{2}$ at $\left(1, m_{2}\right)$.
3. $\angle A B C$ is a right angle.
4. $\triangle A B C$ is a right triangle.
5. $B A=\sqrt{1+m_{1}^{2}}$
$B C=\sqrt{1+m_{2}{ }^{2}}$
$A C=\sqrt{(1-1)^{2}+\left(m_{1}-m_{2}\right)^{2}}=m_{1}-m_{2}$
6. $\left(\sqrt{1+m_{1}^{2}}\right)^{2}+\left(\sqrt{1+m_{2}^{2}}\right)^{2}=\left(m_{1}-m_{2}\right)^{2}$
7. $1+m_{1}^{2}+1+m_{2}^{2}=\left(m_{1}-m_{2}\right)^{2}$
8. $2+m_{1}^{2}+m_{2}^{2}=m_{1}^{2}-2 m_{1} m_{2}+m_{2}^{2}$
9. $2=-2 m_{1} m_{2}$
10. $-1=m_{1} m_{2}$
11. $m_{1}=-\frac{1}{m_{2}}$

Theorem: If the slopes of two lines are negative reciprocals, the lines are perpendicular. (The product of the slopes $=-1$.) $\quad\left(\right.$ Let $m_{1}=$ slope of $\boldsymbol{\ell}_{1} ; m_{2}=$ slope of $\left.\boldsymbol{\ell}_{2}\right)$

Given: $m_{1}=-1 / m_{2} \quad\left(m_{1} \cdot m_{2}=-1\right)$
Prove: $\boldsymbol{\ell}_{1} \perp \boldsymbol{\ell}_{2}$
For ease of computation, translate the lines so the point of intersection will be the origin. Draw a vertical line $x=1$ to form $\triangle A B C$.

We will be using the Distance Formula to express the sides of $\triangle A B C$, and then we will attempt to show that the sides satisfy the Pythagorean Theorem proving $\triangle A B C$ to be a right triangle (making the lines perpendicular).

Proof:

1. $m_{1}=-1 / m_{2} ;\left(m_{1} \cdot m_{2}=-1\right)$;
vertical line $x=1$
2. The vertical line, $x=1$, intersects
$\boldsymbol{\ell}_{1}$ at $\left(1, m_{1}\right)$ and $\boldsymbol{\ell}_{2}$ at $\left(1, m_{2}\right)$.
3. $B A=\sqrt{1+m_{1}{ }^{2}}$
$B C=\sqrt{1+m_{2}{ }^{2}}$
$A C=\sqrt{(1-1)^{2}+\left(m_{1}-m_{2}\right)^{2}}=m_{1}-m_{2}$

Will the sides of $\triangle A B C$ satisfy the Pythagorean Theorem?

4. $\left(\sqrt{1+m_{1}^{2}}\right)^{2}+\left(\sqrt{1+m_{2}^{2}}\right)^{2} \stackrel{?}{=}\left(m_{1}-m_{2}\right)^{2}$
5. $1+m_{1}{ }^{2}+1+m_{2}{ }^{2} \stackrel{?}{=}\left(m_{1}-m_{2}\right)^{2}$
6. $2+m_{1}{ }^{2}+m_{2}{ }^{2} \stackrel{?}{=} m_{1}^{2}-2 m_{1} m_{2}+m_{2}{ }^{2}$
7. $2=-2 m_{1} m_{2}$
8. $-1 \stackrel{?}{=} m_{1} m_{2}$
9. $m_{1}=-\frac{1}{m_{2}}$
10. $\triangle A B C$ is a right Δ.
11. $\angle A B C$ is right \angle.
12. $\ell_{1} \perp \ell_{2}$
