\qquad

Become "the very model of a modern Major-General", as referenced in the Pirates of Penzance.

Regarding: $(a+b)^{n}$

1. In terms of n, the number of terms in a binomial expansion is \qquad .
2. In terms of n and b, the power of a in this binomial expansion is always \qquad .
3. The sum of the exponents in each term of this binomial expansion adds to \qquad .
4. The coefficients of the first and last terms of this binomial expansion are each \qquad .
5. To obtain the coefficients of the middle terms of this binomial expansion, a pattern may be employed. The coefficient is the product of the previous term's coefficient and a 's index (exponent), divided by the number of that previous term.
For example: $(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$ The third term's coefficient is based upon $4 a^{3} b$.

$$
\frac{(\text { coefficient })(\text { index of } a)}{\text { number of term }}=\frac{(4)(3)}{2}=6
$$

In the expansion of $(a+b)^{5}$, the third term is $10 a^{3} b^{2}$. What is the coefficient of the fourth term? \qquad
6. Fill in the blanks: $\binom{n}{k}={ }_{n} C_{k}=\frac{\square!}{\square!\square!}$
7. Fill in the blanks: $(a+b)^{n}=\sum_{k=\square}^{\square}\binom{\square}{k} a^{\square} b^{\square}$
8. Fill in the blanks: The $r^{\text {th }}$ term of the expansion of $(a+b)^{n}$ is: $\binom{\square}{r-1} a a^{\square} b^{\square}$
9. Expand: $(a+b)^{6}$
10. Find the $3^{\text {rd }}$ term of $(a+b)^{9}$.
11. The coefficients $\binom{n}{k}$ of a binomial expansion form a portion of a famous triangle known as
\qquad .
12. Consider the expansion of $(x+2)^{5}$. The graphing calculator can quickly produce the coefficients $\binom{n}{k}$ through use of the LISTS or Spreadsheet:

TI-Nspire			
1.1	RAD AUTO REAL		\square
${ }^{\text {a }}$ term	${ }^{8}$ coeff ${ }^{\text {c }}$	$]^{\text {a }}$	
-	=ncr(5,term)		
0	1		
21	5		
$3 \quad 2$	10		
4	10		
$5 \quad 4$	5		\sim
B coeff: $=$ nc	cr(5, term)	*	

In A, enter the values 0 through
5 , the power to which the binomial is raised. In B, enter the combination formula, using the power of the binomial as the starting value, and the entries from A as the ending values.

Using your graphing calculator as described above, prepare the expansion of $(x+y)^{6}$.
13. Find the $4^{\text {th }}$ term of the expansion of $(3 x-2)^{5}$.

