Teeming with a lot o' news! Binomial Theorem

Name

Become "the very model of a modern Major-General", as referenced in the Pirates of Penzance.

Regarding: $(a+b)^n$

1. In terms of *n*, the number of terms in a binomial expansion is ______.

2. In terms of *n* and *b*, the power of *a* in this binomial expansion is always _____.

3. The sum of the exponents in each term of this binomial expansion adds to ______.

4. The coefficients of the first and last terms of this binomial expansion are each ______.

5. To obtain the coefficients of the middle terms of this binomial expansion, a pattern may be employed. The coefficient is the product of the previous term's coefficient and a's index (exponent), divided by the number of that previous term.

For example: $(a+b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$ The third term's coefficient is based upon $4a^3b$. $\frac{(coefficient)(index of a)}{number of term} = \frac{(4)(3)}{2} = 6$

In the expansion of $(a+b)^5$, the third term is $10a^3b^2$. What is the coefficient of the fourth term?_____

6. Fill in the blanks:
$$\binom{n}{k} =_n C_k = \frac{\boxed{!}}{\boxed{!}!}$$

7. Fill in the blanks:
$$(a+b)^n = \sum_{k=1}^n {\binom{n}{k}} a^{\frac{n}{k}} b^{\frac{n}{k}}$$

- **9.** Expand: $(a+b)^6$
- 10. Find the 3rd term of $(a+b)^9$.

11. The coefficients $\binom{n}{k}$ of a binomial expansion form a portion of a famous triangle known as

- 12. Consider the expansion of $(x+2)^5$. The graphing calculator can quickly produce the coefficients through use of the LISTS or Spreadsheet: **TI-84**+ **TI-Nspire** 12 RAD AUTO REAL L1 L3. 2 L1 L2 L3 2 1.1 A term coeff 1 01225 012255 =ncr(5,term) 10 10 5 1 2 10 i 3 10 5 4 L2(0)=1∟2 =5 nCr L1 B coeff:=ncr(5,term) In L1, enter the values 0 through The coefficients from the In A, enter the values 0 through the power to which the binomial combinations will appear 5, the power to which the binomial is raised, in this case 5. In L2, in L2. is raised. In B, enter the enter the combination formula, combination formula, using the using the power of the binomial as power of the binomial as the the starting value, and the entries starting value, and the entries from from L1 as the ending values. A as the ending values.
 - Using your graphing calculator as described above, prepare the expansion of $(x + y)^6$.

13. Find the 4th term of the expansion of $(3x-2)^5$.