The Trouble with Tribbles

Name \qquad
Rate of Growth
Tribbles are cute, furry creatures that exist in the world of Star Trek. Being Hermaphrodites (both male and female), tribbles can produce a litter of 10 babies every 12 hours. (Assume none of them die during this initial investigation.)

1. One tribble was trapped in the grain hold of the starship Enterprise for 3 days. Science officer, Spock, proclaimed that there were 1,771,561 tribbles in the grain hold at the end of this time. Is Spock mathematically correct, or is he just mumbling TV dialog? Complete the chart below to determine if Spock's number was correct.

After \ldots	The number of tribbles \ldots
12 hours	$1+10$ babies $=11$ tribbles
24 hours	$11+$
36 hours	
48 hours	
60 hours	
72 hours	

2. Was Spock correct? \qquad
3. Using your graphing calculator, prepare a scatter plot of the data from the chart. Label your axes.

4. Find the exponential regression equation for this data.

$$
y=
$$

\qquad
5. What was the correlation coefficient for this model? \qquad
What does it tell you about the regression equation? \qquad
6. How many tribbles were in the grain hold after 20 hours? \qquad

A new generation of tribbles is produced every 12 hours and each generation is exactly 11 times larger than the previous generation. In addition, 11 is the sum of a parent tribble and its offspring.

A simple equation can be used to represent the rate of growth of a population:

$$
r=\frac{b-d}{P}
$$

$$
\begin{aligned}
& r=\text { rate of growth } \\
& b=\text { birth rate } \\
& d=\text { death rate } \\
& P=\text { population size } .
\end{aligned}
$$

7. Using the formula above, express the rate of growth of the tribble population. \qquad
8. If the tribble had only 4 babies in each litter, express the rate of growth of the population. \qquad
9. The size of the tribble population each 12 hours can be determined by multiplying the rate of growth times the population, and adding it to the current population size, where t refers to the time in generations.

$$
P_{t+1}=r P_{t}+P_{t}=(r+1) P_{t}
$$

Show the use of this formula as it relates to the tribble example: $P_{2}=$ \qquad
10. The recursive nature of the formula in $\# 9$ makes it cumbersome for calculating population size for specific time periods, as you must compute all time periods preceding the desired time. Let's examine the numbers in search of an easier formula:

After	Generation	Population of Tribbles
0 hrs	0	1 tribble
12 hrs	1	$1+10=11 \rightarrow(10+1)^{1} \cdot 1$
24 hrs	2	$11+10 \bullet 11 \rightarrow(10+1) \cdot 11 \rightarrow(10+1) \cdot(10+1) \rightarrow(10+1)^{2} \cdot 1$
36 hrs	3	$121+10 \cdot 121 \rightarrow 11(11 \cdot 10+11) \rightarrow 11(11(10+1)) \rightarrow(10+1)((10+1)(10+1))$
		$\rightarrow(10+1)^{3} \cdot 1$

It appears from our investigation that the population size formula, where t refers to the time in generations, can be re-written as $P_{t}=(r+1)^{t} P_{0} \quad\left(P_{0}\right.$ is the initial population - one tribble) Verify Spock's answer using this new formula:
11. Let's compare the new formula in $\# 10$ with the exponential regression equation from the graphing calculator. Use the formulas to determine the population size in the $3^{\text {rd }}$ generation $=36$ hours.

$P_{t}=(r+1)^{t} P_{0}$	Regression equation:

