|
The quicksort is considered to be very efficient, with its "divide and
conquer" algorithm. This sort starts by dividing the original
array into two sections (partitions) based upon the value of the first
element in the
array. Since our example sorts into descending order, the first
section will contain all the elements greater than the first element.
The second section will contain elements less than (or equal to) the first element.
It is possible for the first element to end up in either section.
Let's examine our same example: |
Array at beginning: |
84 |
69 |
76 |
86 |
94 |
91 |
|
86 |
94 |
91 |
84 |
69 |
76 |
|
94 |
91 |
86 |
84 |
69 |
76 |
|
94 |
91 |
86 |
84 |
69 |
76 |
|
94 |
91 |
86 |
84 |
69 |
76 |
Done: |
94 |
91 |
86 |
84 |
76 |
69 |
This sort uses recursion - the process of "calling itself". Recursion
will be studied at a later date.
//Quick Sort Methods for Descending Order
// (2 Methods)
public static void QuickSort(int [ ] num, int top, int bottom)
{
// top = subscript of beginning of array
// bottom = subscript of end of array
int middle;
if (top < bottom)
{
middle = partition(num, top, bottom);
QuickSort(num, top, middle); // sort first section
QuickSort(num, middle+1, bottom); // sort second section
}
return;
}
//Method to determine the partitions
// partitions the array and returns the middle subscript
public static int partition(int [ ] array, int top, int bottom)
{
int x = array[top];
int i = top - 1;
int j = bottom + 1;
int temp;
do
{
do
{
j - -;
}while (x >array[j]);
do
{
i++;
} while (x <array[i]);
if (i < j)
{
temp = array[i];
array[i] = array[j];
array[j] = temp;
}
}while (i < j);
return j; //
returns middle subscript
}
|